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We describe a hierarchy of approximations (MP2[x]) that allow one to estimate second-order Mgller—
Plesset (MP2) energies in a large basis set from small-basis calculations. The most cost-effective
approximation, MP2[K], is significantly cheaper than full MP2 but numerical tests on small atoms
and molecules indicate that it is nonetheless accurate. We conclude that MP2[K] is an attractive level
of theory for large systems. © 2011 American Institute of Physics. [doi:10.1063/1.3556705]

. INTRODUCTION

Accurate prediction of molecular properties from first
principles' requires quantum mechanical methods that
incorporate electron correlation, i.e., effects beyond the
Hartree—Fock (HF) model. Second-order Mgller—Plesset
perturbation theory’ (MP2) offers one of the most cost-
effective methods to include these and, although it is less
economical than density functional approaches, it enjoys the
advantage of naturally and properly accounting for medium-
and long-range correlation.’> Nonetheless, its O(N?) cost has
been a significant obstacle to its application in large systems.

There has, however, been significant progress toward
reducing this cost. Methods such as local MP2 (LMP2),*>
cutoff-based Laplace-transform MP2,5®  atomic-orbital-
based (AO)-based LMP2,° and scaled-opposite-spin MP2
(Ref. 10) have costs that grow more slowly with N and have
extended the scope of MP2 to much larger systems. Other
developments, based on the resolution of the identity (RI)
(Refs. 11 and 12) or the pseudospectral method,'* do not
alter the fifth-order scaling but have dramatically reduced
prefactors. Finally, we note the extraordinary speeds that can
be achieved'* !> in MP2 calculations by exploiting graphics
processing units, rather than central processing units.

We are interested in pursuing large basis set MP2 calcu-
lations on chemically interesting systems, but such systems
often possess compact three-dimensional structures, and the
savings achieved by local methods can sometimes be disap-
pointing. Moreover, the neglect of contributions from distant
electron pairs can lead to the underestimation of physically
significant dispersion interactions. It is clearly desirable to de-
velop alternative methods that improve computational speed
while maintaining accuracy.

It is well known that, although the cost of a small-
basis (primary) HF calculation is significantly less than that
of a large-basis (secondary) calculation, the occupied pri-
mary molecular orbitals (MOs) are often similar to the sec-
ondary ones. This led us recently to develop perturbative
approaches that “bootstrap” from small-basis HF calcula-
tions toward large-basis HF energies'¢~'® and, in the present
work, we extend these ideas, investigating a hierarchy of
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approximations that estimate large-basis MP2 energies using
cheap small-basis MOs.

Unlike earlier dual-basis MP2 (DB-MP2) methods, %!
which use approximate secondary MOs and an approximate
secondary HF energy, our methods employ the exact MOs
and energy. Notwithstanding this, our methods achieve
savings in the bottleneck step (the first quarter transformation
of the two-electron integrals) and are, thus, well suited for
MP2 calculations with large basis sets.

Il. THEORY

In a closed-shell system of 20 electrons, a self-consistent
field (SCF) calculation®>?? in a (secondary) basis set of N
functions yields O occupied and N — O virtual MOs. These
orbitals and their associated energies yield the (secondary)
MP2 correlation energy®*
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The electron repulsion integrals (ERIs) in the MO ba-
sis are formed from the AO integrals via the integral
transformation®*

N
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and, for maximum efficiency, this is performed in four quarter
transformations. The first of these, which is normally the most
expensive, requires O N* multiply-adds.

Our dual-basis MP2 reduces this computational bot-
tleneck by avoiding the full integral transformation in the
secondary basis. We begin with a full secondary HF calcu-
lation, to obtain the secondary HF energy, MOs, and orbital
energies. However, instead of then constructing the exact
secondary ERIs using Eq. (2), we perform a cheaper HF cal-
culation in a primary basis of n < N functions, to obtain O
occupied orbitals and n — O virtuals (Fig. 1). We then use the
maximum overlap method” to divide the secondary virtuals
into those that correspond to the primary virtuals (viz., the S»
space) and those that comprise the extended virtual space Sj3.
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FIG. 1. Orbital spaces in the dual-basis framework

We then write each secondary ERI as the sum

(isas|jsbs) = (ipap|jpbp)

+ A+ Ao+ A+ A (3a)
+ Aip + Ayj + Ay (3b)
+ A +Ajy (3c)
+ Ajj (3d)
+ Ajgj + Djap + Ajjp + Agjp (3e)
+ Ajgjp (31)

of the corresponding primary ERI (ipap|jpbp), the
one-orbital corrections [Eq. (3a)], two-orbital corrections
[Egs. (3b)—(3d)], three-orbital corrections [Eq. (3e)], and
four-orbital corrections [Eq. (3f)]. These corrections are ERIs
over primary and difference orbitals

. iS i€S3 (4)
s =
"Tis—ir i¢Ss

and, thus, for example,

A; = (isap|jpbp) = (isapljpbp) — (ipap|jrbp). (5)

The primary ERIs are cheap to form, the one-orbital
corrections are more expensive, the two-electron corrections
are even more expensive, and so on. These costs are sum-
marized in Table I and suggest a hierarchy of progressively
more accurate, but expensive, approximations to the sec-
ondary ERIs. Accordingly, we define the MP2[1], MP2[K],
MP2[J], MP2[2], and MP2[3] integrals as resulting from trun-
cation after Egs. (3a), (3b), (3¢c), (3d) or (3e), respectively.
The MP2[4] integrals, of course, are exactly the secondary
integrals (ia|jb) (we note that the cost of the subtractions
in equations such as Eq. (5) grows only quartically with
nand N).

We note for MP2[1] and MP2[K] the cost of the subse-
quent transformation with O>N? scaling is also reduced by
N?/n and N/n compared to conventional MP2. This reduc-
tion is important if the AO integrals are sparse.
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TABLE 1. Costs (multiply-adds) of the first quarter integral transformation
in the MP2[x] approximations (n = size of primary basis set; N = size of
secondary basis set; O = number of occupied orbitals; P represents a primary
MO; S represents a secondary MO).

Required Cost of quarter Cost

integrals transformation ratio
MP2[0] (PP|PP) on* (N/n)*
MP2[1] + (SP[PP) +On’N (N/n)}
MP2[K] + (PS|PS) + On’N? (N/n)?
MP2[J] + (SS|PP) + On®N? T(N/n)?
MP2[2] + (PS|PS) + On®N? (N /n)?
MP2[3] + (SS|SP) +0nN? (N/n)
MP2 +(SS|SS) +ON* 1

The MP2[x] total energy, which we will denote by
MP2[x]/(primary basis)/(secondary basis)

is then the sum of the exact secondary HF energy and the cor-
relation energy (1) using the MP2[x] integrals. We eschew the
possibility of using an approximate dual-basis secondary HF
energy because the HF component is not rate-limiting in MP2
calculations on large systems. For convenience, we define the
MP2[0] as the normal MP2 energy in the primary basis.

lll. RESULTS
A. H> molecule

To provide interested readers with benchmark re-
sults for their own code development, we calculated the
MP2[x]/primary/cc-pV5Z energy of H, (R = 1.4 bohr), us-
ing a sequence of increasingly accurate primary bases.
Table II reveals that the MP2/primary errors range from 38
to 0.7 mEj, but that there are dramatic improvements at the
MP2[K] and MP2[3] levels (2-3 and 3-5 orders of magnitude,
respectively). We are particularly encouraged by the accuracy
achieved with STO-3G primary basis because it contains only
one s function per H atom. The MP2/STO-3G energy lies 38
mE; above the MP2/cc-pV5Z energy but this crude starting
point yields a MP2[K]/STO-3G/cc-pV5Z energy that misses
MP2/cc-pV5Z by only 1 mE), which is almost as good as
MP2/cc-pVQZ. Moreover, we see that MP2[K] with primary
bases beyond cc-pVDZ incurs negligible errors.

TABLE II. Deviation (hartree) of MP2[x]/primary/cc-pV5Z energies from
MP2/cc-pV5Z for the Hy molecule.

STO-3G cc-pVDZ cc-pVTZ cc-pVQZ
N/n 70 14 5 2
MP2[0] 3.8 x 1072 1.2 x 1072 2.6 x 1073 7.1 x 107
MP2[1] 1.5x1072  —21x103 —=32x1073 1.6 x 1074
MP2[K] —9.6x 1074 1.8x107% —26x10° —2.1x1077
MP2[J] —6.4x 1074 1.2x 107 4.1 %1076 3.7 %1077
MP2[2] —6.5x 1074 1.2 x 1074 3.9 x 107 3.6 x 1077
MP2[3] 7.7 x 1073 7.9 x 107° 9.5x 1078 5.2x 107°
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FIG. 2. Absolute errors (kJ/mol) of MP2[0]/cc-pVDZ/cc-pVTZ for our test
set.

B. Computational details

In our work on HF perturbative corrections,'®!” we

found that cc-pVDZ is an effective primary basis when the
secondary basis is cc-pVTZ. To study the MP2[x] approxima-
tions, we, therefore, computed MP2[x]/cc-pVDZ/cc-pVTZ
energies for the first-row atoms (He—Ne) and the 32 neutral
molecules based on these atoms in the G1 data set.?® To facili-
tate comparisons with the DB-MP2 method, we have also per-
formed MP2[x]/rcc-pVTZ/cc-pVTZ calculations on the same
test set of 41 systems. All geometries were optimized at the
B3LYP/6-31G(2df, p) level. Calculations on open-shell sys-
tems used the unrestricted Hartree—Fock formalism. SCF con-
vergence required a direct inversion in the iterative space
(DIIS) error of 107 using integral cutoffs of 10~'% Cartesian
d and f functions were used.

C. Accuracy of MP2[x]

Table III summarizes the MP2[x] deviations from exact
MP2 energies, giving the mean signed error (MSE), mean ab-
solute error (MAE), maximum error (Max), and number of
outliers (NO) (> 4 kJ/mol). The raw data are available in the
supplementary material.?’

The MP2[0] = MP2/cc-pVDZ energies underestimate
the MP2/cc-pVTZ values by 237 kJ/mol on average and
Fig. 2 shows the distribution of these errors. Given such large
differences, one may wonder how effective the one-orbital
corrections [Eq. (3a)] will be and it is, therefore, encourag-
ing to find that the MP2[1] energies (MAE = 26 kJ/mol) are
generally much more accurate than the MP2[0] ones. How-
ever, inspection of the individual errors reveals that the im-

TABLE III. Errors (kJ/mol) of MP2[x]/cc-pVDZ/cc-pVTZ, relative to
MP2/cc-pVTZ, for our test set

MAE MSE Max NO
MP2[0] 236.9 236.9 574.5 41
MP2[1] 25.7 11.4 82.1 41
MP2[K] 1.10 0.92 4.1 1
MP2[J] 0.32 0.21 1.1 0
MP2[2] 0.30 0.17 1.0 0
MP2[3] 0.07 0.03 0.4 0
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FIG. 3. Absolute errors (kJ/mol) of MP2[K]/cc-pVDZ/cc-pVTZ for our test
set.

provement is not uniform and, for example, whereas the er-
ror drops by more than an order of magnitude for H,O,, the
improvement is less than a factor of 2 for Li. This would
seem to preclude the development of a useful “scaling factor”
scheme.

The MP2[K] energies are striking and the extraordinary
improvement between MP2[1] and MP2[K] reveals the im-
portance of pair-correlation between orbitals in the extended
space S3. As Fig. 3 shows, the MP2[K] errors are consis-
tently 2 orders of magnitude smaller than the MP2[0] errors.
On average, their deviations from the exact MP2 energies are
only 1 kJ/mol and even the largest discrepancy (CO,) is only
4 kJ/mol. Such discrepancies will be tolerable in many chem-
ical applications.

MP2[J] is significantly more accurate than MP2[K] but
incurs twice the cost. MP2[2] is yet more expensive but is
almost identical to MP2[J], indicating that the relaxation of
occupied orbitals upon basis set extension is negligible.

MP2[3] energies are almost indistinguishable (MAE
= 0.07 kJ/mol) from the exact MP2 values. However, al-
though it is reassuring to see that the MP2[x] hierarchy
converges smoothly toward exact MP2, the cost of MP2[3]
is much greater than MP2[2] and we, therefore, doubt that
MP2[3] will have much practical utility.

D. Comparison with DB-MP2

Recent work?"-?® has shown that the DB-MP2 method
(i.e., applying MP2 theory to the approximate orbitals from
a dual-basis HF calculation) is more accurate than the
Wolinski—Pulay scheme,?’ and it is, therefore, interesting to
compare it with MP2[x]. To this end, we have used both meth-
ods with the rcc-pVTZ primary basis® to target the MP2/cc-
pVTZ energies of our test set.

Table IV shows that DB-MP2 and MP2[K] are broadly
comparable, with MAEs of 0.6 and 0.3 kJ/mol, respectively. A
detailed analysis reveals that the slight superiority of MP2[K]
stems from its use of the exact secondary HF energy.

Because our pilot MP2[x] implementation is unopti-
mized, we have not yet attempted timing comparisons with
DB-MP2. However, comparisons can still be made based on
theoretical arguments.
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TABLE 1IV. Errors (kJ/mol) of MP2[x]/rcc-pVTZ/cc-pVTZ  and
DB-MP2/rcc-pVTZ/cc-pVTZ, relative to MP2/cc-pVTZ, for our test
set.

MAE MSE Max NO
MP2[0] 72.1 72.1 160.1 39
MP2[1] 21.7 —8.8 131.8 32
DB-MP2 0.55 0.55 2.6 0
MP2[K] 0.32 0.27 1.1 0
MP2[J] 0.07 0.06 0.3 0
MP2[2] 0.06 0.05 0.3 0
MP2[3] 0.02 0.0 0.2 0

DB-MP2 employs the efficient DB-HF algorithm for
the fourth-order secondary HF reference calculation, but
leaves the fifth-order MP2 component untouched. As a result,
DB-MP2 is very effective for small- to medium-sized sys-
tems, where the underlying HF calculation is the bottleneck.
For larger systems, DB-MP2 becomes less efficacious but
the MP2[x] approximations become increasingly competi-
tive. For example, as Table I shows, MP2[K] and MP2[J] are
cheaper than MP2 by factors of N2/(n?) and N2/(2n?), re-
spectively. To illustrate these, the cc-pVTZ/cc-pVDZ ratio for
our test set is roughly 2.5, which implies speedup factors of 6
and 3, respectively.

Steele et al.?! have shown that the usefulness of DB-MP2
is enhanced when it is combined with the RI approximation.
In the same way, it is not difficult to develop RI versions of
the MP2[x] approximations and these will yield even greater
computational savings.

IV. CONCLUDING REMARKS

We have examined a hierarchy of schemes that use the
results of a small-basis HF calculation to approximate a
large-basis MP2 energy. Our methods reduce the cost of the
integral transformation steps and are, therefore, well suited
for MP2 calculations on large systems.

We have tested the accuracy of our methods using the
cc-pVDZ/cc-pVTZ basis set pair on a set of 41 atoms and
molecules. The MP2[K] and MP2[J] energies are close to true
MP2 energies (MAEs of 1.1 and 0.3 kJ/mol, respectively) but
will be considerably faster. MP2[3] is even more accurate, but
may not be much faster than full MP2. We anticipate that
MP2[K] is probably the best compromise between cost and
accuracy.

The MP2[x] hierarchy can be incorporated into existing
MP2 software and we will report timing results from the
Q-CHEM package’® in a forthcoming paper.
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